Spike-Timing-Dependent Plasticity: The Relationship to Rate-Based Learning for Models with Weight Dynamics Determined by a Stable Fixed Point
نویسندگان
چکیده
Experimental evidence indicates that synaptic modification depends on the timing relationship between the presynaptic inputs and the output spikes that they generate. In this letter, results are presented for models of spike-timing-dependent plasticity (STDP) whose weight dynamics is determined by a stable fixed point. Four classes of STDP are identified on the basis of the time extent of their input-output interactions. The effect on the potentiation of synapses with different rates of input is investigated to elucidate the relationship of STDP with classical studies of long-term potentiation and depression and rate-based Hebbian learning. The selective potentiation of higher-rate synaptic inputs is found only for models where the time extent of the input-output interactions is input restricted (i.e., restricted to time domains delimited by adjacent synaptic inputs) and that have a time-asymmetric learning window with a longer time constant for depression than for potentiation. The analysis provides an account of learning dynamics determined by an input-selective stable fixed point. The effect of suppressive interspike interactions on STDP is also analyzed and shown to modify the synaptic dynamics.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملStable Competitive Dynamics Emerge from Multispike Interactions in a Stochastic Model of Spike-Timing-Dependent Plasticity
In earlier work we presented a stochastic model of spike-timing-dependent plasticity (STDP) in which STDP emerges only at the level of temporal or spatial synaptic ensembles. We derived the two-spike interaction function from this model and showed that it exhibits an STDP-like form. Here, we extend this work by examining the general n-spike interaction functions that may be derived from the mod...
متن کاملRate and Pulse Based Plasticity Governed by Local Synaptic State Variables
Classically, action-potential-based learning paradigms such as the Bienenstock-Cooper-Munroe (BCM) rule for pulse rates or spike timing-dependent plasticity for pulse pairings have been experimentally demonstrated to evoke long-lasting synaptic weight changes (i.e., plasticity). However, several recent experiments have shown that plasticity also depends on the local dynamics at the synapse, suc...
متن کاملSpike Timing Dependent Competitive Learning in Recurrent Self Organizing Pulsed Neural Networks Case Study: Phoneme and Word Recognition
Synaptic plasticity seems to be a capital aspect of the dynamics of neural networks. It is about the physiological modifications of the synapse, which have like consequence a variation of the value of the synaptic weight. The information encoding is based on the precise timing of single spike events that is based on the relative timing of the preand post-synaptic spikes, local synapse competiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2004